Small-x and Forward Measurements at STAR

Chris Perkins

UC Berkeley/Space Sciences Laboratory
Stony Brook University
For the STAR Collaboration

DIS 2011

Newport News, VA

4/12/2011

Low-x and Color Glass Condensate

$$x \sim \frac{2p_T}{\sqrt{s}}e^{-y}$$

Gluon densities rise at low-x and recombination becomes important. Non-linear contributions to evolution need to be included.

Color Glass Condensate: semi-classical effective field theory for computing low-x gluons in nuclei.

Saturation can apply for: Low-x, Large sqrt(s), Large y, Large A

Kinematics

- Hadronic probe (p,d) directly couples with gluons in target (p, Au)
- Forward scattering probes asymmetric partonic collisions

high-x valence quarks on low-x gluons $(0.001 < x_q < 0.1)$

$$x_F = x_1 - x_2$$
 $x_2 = small \rightarrow x_F \approx x_1 = large$

 Forward Rapidity + Nuclear Target = best opportunity to probe gluon saturation

Expectations From Color Glass Condensate

CGC expects suppression of forward hadron production in p(d)A collisions compared to p+p

pQCD 2→2 process =back-to-back di-jet With high gluon density this goes to: 2→1 (or 2→many) process = Mono-jet?

CGC predicts suppression of backto-back correlations

STAR Forward π^0

PRL 97, 152302 (2006)

Sizable suppression

pQCD+Shadowing expects suppression, but not enough

CGC gives best description of p_T dependence

R_{dAu} Rapidity Dependence

Observe significant rapidity dependence similar to expectations from the CGC framework

Di-Hadron Correlations

- Inclusive production measures integral of broad x range
- Measuring correlations between two forward π^0 probes a limited, smaller x range

$$x_{+} \approx \frac{p_{T}}{\sqrt{s}} \left(e^{+\eta_{1}} + e^{+\eta_{2}} \right) \xrightarrow{\eta_{1} >> \eta_{2}} x_{F}$$

$$x_{-} \approx \frac{p_{T}}{\sqrt{s}} \left(e^{-\eta_{1}} + e^{-\eta_{2}} \right) \xrightarrow{\eta_{1} >> \eta_{2}} x_{F} e^{-(\eta_{1} + \eta_{2})}$$

Correlations between two forward π^0 are more sensitive to low-x gluons than inclusive production

STAR Run 8 Configuration

STAR η-φ Coverage

STAR has nearly hermetic coverage over full azimuthal range and wide pseudorapidity range

Forward-Mid Rapidity Correlations

Probe nuclei gluon density at 0.008 < x < 0.07

PYTHIA simulation

When triggering on a forward rapidity π^0 , the rapidity of the associated π^0 is correlated with the x_{bi} of the soft parton involved in the partonic scattering.

Forward-Mid Rapidity Correlations

- Forward (FMS) π^0 trigger particle
- Mid-rapidity (BEMC/TPC) π^0/h^{\pm} associated particle
- Includes efficiency and background corrections

- No significant broadening from p+p to d+Au
- No hints of away-side peak disappearance

Forward-Forward Rapidity Correlations

• Probe gluon density at 0.0009 < x < 0.005

Look at forward-forward correlations to access lowest x region

Forward-Forward Rapidity Correlations

- Forward (FMS) π^0 trigger particle
- Forward (FMS) π^0 associated particle
- **Centrality Averaged**
- Not yet efficiency or background corrected

Significant broadening from p+p to d+Au in the away side peak.

Forward-Forward Rapidity Correlations: Centrality Dependence

- Centrality selection from Au-side (East)
 BBC charge sum
- Near-side peak similar in p+p and d+Au

Forward-Forward Rapidity Correlations: Centrality Dependence

- Centrality selection from Au-side (East)
 BBC charge sum
- Near-side peak similar in p+p and d+Au
- Peripheral d+Au Away-side peak similar to p+p

Forward-Forward Rapidity Correlations: Centrality Dependence

Tagging Spectator Neutrons from Deuteron Beam

 It may also be useful to distinguish between p+Au and d+Au collisions by looking for events where the neutron in the deuteron remains intact

Deuteron-facing (West) ZDC Response

Gold-facing (East) BBC Charge Sum

- Minimum Bias Run 8 d+Au Data
- Tag spectator neutrons using deuteron-facing (West) ZDC
- Clear single-neutron peak
- Cutting on single-neutron peak biases towards peripheral collisions

Di-Pion Invariant Masses

d+Au, Centrality Averaged, No Neutron Tag

d+Au, Centrality Averaged, With Neutron Tag

- Similar Invariant Mass distributions with and without neutron tagging
- Efficiency Corrections of Azimuthal Correlations should be similar with and without neutron tagging

With Neutron Tag

- Inclusion of west ZDC spectator neutron condition reduces the pedestal
- Pedestal from d+Au correlations with neutron tag are quantitatively consistent with pedestal in p+p correlations
- Little impact on peak heights above pedestal or widths with spectator neutron condition
- Study of systematics in progress

Peripheral Collisions

No Neutron

- Inclusion of west ZDC spectator neutron condition reduces the pedestal
- Pedestal from d+Au correlations with neutron tag are quantitatively consistent with pedestal in p+p correlations
- Little impact on peak heights above pedestal or widths with spectator neutron condition
- Study of systematics in progress
- Some theorists have argued that multi-parton interactions will affect the pedestal level (Strickman, Vogelsang arXiv: 1009.6123)
- Data indicates that multi-parton interactions appear to contribute to the pedestal in d+Au collisions more than p+Au collisions
- Other basic aspects of the azimuthal correlations appear to be unchanged between d+Au and A p+Au collisions

Peripheral Collisions

Conclusions and Outlook

- Forward-Mid Di-Hadron Azimuthal Correlations:
 - No significant Away-side peak broadening
- Forward-Forward Di-Pion Azimuthal Correlations:
 - Near-side peak is similar between p+p and d+Au
 - Significant broadening in Away-side peak between p+p and d+Au
 - Peripheral Away-side peak similar between p+p and d+Au
 - Central Away-side peak shows strong suppression
- Tagging spectator neutron from deuteron may differentiate between p+Au and d+Au
 - Multi-parton interactions may contribute to pedestal in d+Au but not p+Au collisions
 - Other basic aspects of azimuthal correlations appear unchanged between d+Au and p+Au
- Efficiency and background corrections for forward-forward azimuthal correlations in progress
- Analysis of intermediate pseudorapidity region between forward and mid-rapidity is currently in progress using EEMC

Backup

Centrality Determination in d+Au

East BBC charge sum	Average impact parameter (fm)
0 - 500	6.8 ± 1.7
2000 - 4000	2.7 ± 1.3

 Multiplicity in d+Au measured by the east beam beam counter (BBC) at STAR reflects the centrality.